Chapter eight Frequency Characteristics
of AC Circuits

When you have studied the material in this chapter, you should be able to:

+ design simple high-pass and low-pass networks using RC or RL circuits

+ explain how the gain and phase shift produced by these circuits varies with frequency

¢+ predict the effects of combining a number of high-pass or low-pass stages and outline the
characteristics of the resulting arrangement

¢ describe the characteristics of simple circuits containing resistors, inductors and capacitors, and
calculate the resonant frequency and bandwidth of such circuits

+ discuss the operation and characteristics of a range of passive and active filters

+ explain the importance of stray capacitance and stray inductance in determining the frequency
characteristics of electronic circuits.

Having studied the AC behaviour of some basic circuit components, we are
Now in a position to consider their effects on the frequency characteristics of
simple circuits.

While the properties of a pure resistance are not affected by the frequency
of the signal concerned, this is not true of reactive components. The reac-
tance of both inductors and capacitors is dependent on frequency, and there-
fore the characteristics of any circuit that includes capacitors or inductors
will change with frequency. However, the situation is more complex than
this because, as we noted in Chapters 4 and 5, all real circuits have both stray
capacitance and stray inductance. Inevitably, therefore, the characteristics of
all circuits will change with frequency.

In order to understand the nature of these frequency-related effects we
will look at simple combinations of resistors, capacitors and inductors and
see how their characteristics change with frequency. However, before look-
ing at these circuits it is useful to introduce a couple of new concepts and
techniques.

A two-port network is, as its name suggests, simply a circuit configuration
that has two ‘ports’, namely the input port and the output port. Such an
arrangement is shown in Figure 8.1(a).

When connected to some input circuitry (perhaps a voltage source) and
to some output circuitry (such as a load resistor) we can then identify the
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Figure 8.1

network.

A two-port
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O— —10
Input Output
port port
1 =t
(a) A two-port network (b) A typical arrangement

voltages at the input and the output (7, and V) and the currents flowing into
and out of the network (/; and 7,). Such an arrangement is illustrated in
Figure 8.1(b). Clearly the relationship between the output voltage and the
output current is determined by the value of the /oad resistance R,. Similarly,
the relationship between the input voltage and the input current determines
the effective resistance looking into the input port of the arrangement. This
is termed the input resistance of the network, which is given the symbol R,
and clearly is equal to /7. We can then use these various voltages and cur-
rents to describe the characteristics of the two-port network.

"The ratio of the output voltage to the input voltage is termed the voltage
gain of the circuit, while the ratio of the output current to the input current is
termed the current gain. The power gain of the network is the ratio of the
power supplied to a load to the power absorbed from the source. The input power
can be calculated from the input voltage and the input current, and the output
power can be determined from the output voltage and output current. Thus

v
voltage gain (A4,) = I_ (8.1)
i A ;
current gain (A) = I_ (8.2)
P
power gain (A4,) = ; (8.3)

Calculate the voltage, current gain and power gain of the following
two-port network.
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From the diagram, and from Equations 8.1 to 8.3 above, we see that

Vo3V
voltage gain (4)= =+ = ——=0(.3

L
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I 2mA
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current gain (A4,) =

3V x5mA _
—_ = (.75

ywer gain (A,) = - B
power gain (A4,) Vix I, 10V x2mA
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Figure 8.2 Calculating the gain
of several stages in series.
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Note that the various gains can each be greater or less than unity. A gain of
greater than unity represents amplification while a gain of less than unity repres-
ents attenuation. A power gain of greater than unity implies that the circuit
is delivering more power to the load than it is accepting at its input. Such an
arrangement requires some form of external power source. Passive circuits,
such as combinations of resistors, capacitors and inductors, will always have
a power gain that is no greater than unity. 4ctive circuits, which use an external
power supply, can have a power gain that is very much greater than unity.

The power gain of a modern electronic amplifier may be very high, gains
of 10° or 107 being common. With these large numbers it is often convenient
to use a logarithmic expression of gain rather than a simple ratio. This is
often done using decibels.

The decibel (dB) is a dimensionless figure for power gain and is defined by

P,
power gain (dB) = 10 logm? (8.4)
i

where P, is the output power and P, is the input power of the amplifier or
other circuit.

Express a power gain of 2500 in decibels.

P,
power gain (dB) =10 Iogm})—'

1

=10 log,, 2500
=10x 3.40
=34.0dB

Decibels may be used to represent both amplification and attenuation, and,
in addition to making large numbers more manageable, the use of decibels
has several other advantages. For example, when several stages of amplifica-
tion or attenuation are connected in series (this is often referred to as cas-
cading circuits), the overall gain of the combination can be found simply
by adding the individual gains of each stage when these are expressed in
decibels, This is illustrated in Figure 8.2. The use of decibels also simplifies
the description of the frequency response of circuits, as we will see later in
this chapter.

For certain values of gain, the decibel equivalents are easy to remember
or to calculate using mental arithmetic. Since log,, #is simply the power to
which 10 must be raised to equal », for powers of 10 it is easy to calculate.
For example, log,, 10 = 1, log,, 100 = 2, log,, 1000 = 3, and so on. Similarly,
logy 1/10 =1, log,, 1/100 = -2 and log,, 1/1000 = —3. Therefore, gains of

Overall gain =45 dB

¥ F
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Table 8.1 [xpressing power
amplification and attenuation in

decibels.
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Power gain (ratio)

Decibels (dB)
1000 30
100 20
10 10
2 3
| 0
0.5 -3
0.1 -10
0.01 =20
0.001 =30

10, 100 and 1000 are simply 10 dB, 20 dB and 30 dB respectively, and atten-
uations of 1/10, 1/100 and 1/1000 are simply —10 dB, —20 dB and —30 dB.
A circuit that doubles the power has a gain of +3 dB, while a circuit that
halves the power has a gain of -3 dB. A circuit that leaves the power un-
changed (a power gain of 1) has a gain of 0 dB. These results are summarised
in Table 8.1.

In many cases, our knowledge of a circuit relates to its voltage gain rather
than to its power gain. Clearly, these two measures are related, and we know
that the power dissipated in a resistance R is related to the applied voltage
by the expression }%/R. Therefore, the gain of an amplifier expressed in
decibels can be written as

f}‘ l‘:’/Rl
power gain (dB) = 10 log,,— = 10 log,,——%
] E ( 8 P 7 /R,

where I and F; are the input and output voltages, respectively, and R, and
R, are the input and load resistances, respectively.

If; and only if, R, and R, are cqual, the power gain of the amplifier is
given by

V

power gain (dB) = 10 log,,

—

ol

= 20 log —
|44

20 logy, (voltage gain)

Some networks do have equal input and load resistance, and in these cases it
is often useful to express the gain in decibels rather than as a simple ratio.
Note that it is not strictly correct to say, for example, that a circuit has a volt-
age gain of 10 dB, even though you will often hear such statements. Decibels
represent power gain, and what is meant is that the circuit has a voltage gain
that corresponds to a power gain of 10 dB. However, it is very common to
describe the voltage gain of a circuit in dB as
: I'})
voltage gain (dB) = 20 l()glﬂ? (8.5)
d

even when R, and R, are not equal.
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el 1 — = =
Calculate the gain in decibels of circuits that have power gains of 5,
© 50 and 500 and voltage gains of 5, 50 and 500.
1 - Power gain of 5 Gain (dB) = 10 log,(5) 7.0 dB
S ::, Power gain of 50 Gain (dB) = 10 log,(50) 17.0dB
J Power gain of 500 Gain (dB) = 10 log,(500) 27.0dB
- Voltage gain of 5 Gain (dB) = 20 log,(5) 14.0 dB
{ Voltage gain of 50 Gain (dB) = 20 log,(50) 34.0dB
A :-'_ Voltage gain of 500 Gain (dB) = 20 log,,(500) 54.0 dB
i.
k!
en- : . W ; ; . .
B | Converting from gains expressed in decibels to simple power or voltage
h‘li ; ratios requires the reversal of the operations used above. For example, since
[/
::,1:,_1 i power gain (dB) = 10 log,(power gain)
it follows that
her :
OW 4 10 log,,(power gain) = power gain (dB)
e V 1 ;
. 1 : yower gain (dB
| in j log,,(power gain) = ; gain (dB)
10
-. power gain == I{}{pm\.‘crgﬂin{tTH}.-’III] (86)
I Similarly,
and ; - ~
| voltage gain = 1(Fove @in (B0 (8.7)
ris
) §
. Express gains of 20 dB, 30 dB and 40 dB as both power gains and
; ' "~ voltage gains.
4 . 20dB 20 = 10 log,,(power gain)
! power gain = 10° power gain = 100
_ ' 20 = 20 log,(voltage gain)
L] 1t : power gain = 10 voltage gain = 10
atio. ;
volt- - 30dB 30=10 ]ugm(pmlvcr gain)
ibels f: power gain = 10’ power gain = 1000
gam i 30 = 20 log,4(voltage gain)
in:tQ ; power gain = 10" voltage gain = 31.6
] 40 dB 40 = 10 log,,(power gain)
(8.5) s power gain = 10 power gain = 10,000
4 40 = 20 log,,(voltage gain)
i power gain = 10 voltage gain = 100
;
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Figure 8.3 A potential divider
circuit.
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7 RC network

Figure 8.4 A simple RC
network.
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Since the characteristics of reactive components change with frequency, the
behaviour of circuits using these components will also change. The way in
which the gain of a circuit changes with frequency is termed its frequency
response. These changes take the form of variations in the magnitude of the
gain and in its phase angle, leading to two aspects of the response, namely the
amplitude response and the phase response. In some situations both aspects are
of importance, while in others only the amplitude response is needed. For
this reason, the term frequency response is often used to refer simply to the
amplitude response of a system.

In order to understand the nature of these frequency-related effects, we will
start by looking at very simple circuits containing resistors and capacitors, or
resistors and inductors. In Chapter 6, we looked at circuits involving imped-
ances, including the potential divider arrangement shown in Figure 8.3.
From our earlier consideration of the circuit, we know that the output volt-
age of this circuit is given by

Z,
(1] L!J x
Z,+Z,

Another way of describing the behaviour of this circuit is to give an expression
for the output voltage divided by the input voltage. In this case, this gives

7 Z, .
el A= (8.8)
. Lt Z,

This ratio 1s the voltage gain of the circuit, but it is also referred to as its
transfer function. We will now use this expression to analyse the behaviour
of simple RC and RL circuits.

Consider the circuit of Figure 8.4(a), which shows a potential divider, formed
from a capacitor and a resistor, This circuit is shown redrawn in Figure 8.4(b),
which is electrically identical. Applying Equation 8.8, we see that

I T 45
ZR+Z{" .1 -l (‘

v

At high frequencies, @ is large and the value of 1/j@CR is small compared
with 1. Therefore, the denominator of the expression is close to unity and the
voltage gain is approximately 1.

C

1®

(a) (b)
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However, at lower frequencies the magnitude of 1/@CR becomes more
significant and the gain of the network decreases. Since the denominator of
the expression for the gain has both real and imaginary parts, the magnitude
of the voltage gain is given by

| voltage gain | = —

s 1
1=+
\" [(DCR]

When the value of 1/@wCR is equal to 1, this gives

2

| voltage gain | = f_l_ﬁ = + =0.707
vi+1 N
Since power gain is proportional to the square of the voltage gain, this is a
halving of the power gain (or a fall of 3 dB) compared with the gain at high
frequencies. This is termed the cut-off frequency of the circuit. If the
angular frequency corresponding to this cut-off frequency is given the
symbol @, then 1/@,CR is equal to 1, and

mi.zék;:%rad/s (8.10)

where T = CR is the time constant of the capacitor—resistor combination that
produces the cut-off frequency.

Since it is often more convenient to deal with cyelic frequencies (which are
measured in hertz) rather than angular frequencies (which are measured
in radians per second) we can use the relationship @ = 2n f'to calculate the
corresponding cyclic cut-off frequency /:

. W, Lo
b i '

2n 2nCR

(8.11)

Calculate the time constant T, the angular cut-off frequency ©, and

- the cyclic cut-off frequency f of the following arrangement.

10 pkF

T 1k |,

From above

T=CR=10x10°x1x10°=0.01s

w = —]— = —]— =100 rad /s
T o0
p=2 10 con

2n  2n
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Figure 8.5 Phasor diagrams of
the gain of the circuit of Figure
8.4 at different frequencies.
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If we substitute for @ (where @w=2n/) and CR (where CR=1/2n/) in
Equation 8.9, we obtain an expression for the gain of the circuit in terms of
the signal frequency fand the cut-off frequency [ :

v 1 1 1 ;

-4 = = = - (8.12)
U 1 I 1 o

ey o
"ocr " lann2ns)

= IT
This is a general expression for the voltage gain of this form of CR network.

From Equation 8.12, it 1s clear that the voltage gain is a function of the
signal frequency fand that the magnitude of the gain varies with frequency.
Since the gain has an imaginary component, it is also clear that the circuit
produces a phase shift that changes with frequency. To investigate how
these two quantities change with frequency, let us consider the gain of the
circuit in different frequency ranges.

851 Whenf>f,

When the signal frequency fis much greater than the cut-off frequency /,
then in Equation 8.12 f /fis much less than unity, and the voltage gain is
approximately equal to 1. Here the imaginary part of the gain is negligible
and the gain of the circuit 1s effectively real. Hence the phase shift produced
is negligible. This situation is shown in the phasor diagram of Figure 8.5(a).

Im A, Im A4, Im A,

| A =11
[A]=1.0

> Re A, Sl Re A, > Red,

(e} =/

(@) =4

8.5.2 When f=f,

When the signal frequency / is equal to the cut-off frequency /), then
Equation 8.12 becomes

v 1=
! ] — 11—
]/-

Multiplying the numerator and the denominator by (1 +j) gives

v (+§) A+ _
v (-jd+j) 2

0.5 + 0.5

This is illustrated in the phasor diagram of Figure 8.5(b), which shows that
the magnitude of the gain at the cut-off frequency is 0.707. This is con-
sistent with our earlier analysis, which predicted that the gain at the cut-off
frequency should be 1/V2 (or 0.707) times the mid-band gain. In this case,
the mid-band gain is the gain some way above the cut-off frequency, which
we have just shown to be 1. The phasor diagram also shows that at this
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frequency the phase angle of the gain is +45°. This shows that the output
voltage leads the input voltage by 45°. The gain is therefore 0.707£45°.

853 Whenf<f

The third region of interest is where the signal frequency is well below the cut-
off frequency. Here £, /fis much greater than 1, and Equation 8.12 becomes

J
o kL F
)= | s
/ /
The 4 signifies that the gain is imaginary, as shown in the phasor diagram of
Figure 8.5(c). The magnitude of the gain is simply /// and the phase shift
is +90°, the ‘4 sign meaning that the output voltage /eads the input voltage
by 90°.

Since / is a constant for a given circuit, in this region the voltage gain is
lincarly related to frequency. If the frequency is halved the voltage gain will
be halved. Therefore, the gain falls by a factor of 0.5 for every octave drop in
frequency (an octave is a doubling or halving of frequency and is equivalent
to an octave jump on a piano or other musical instrument). A fall in voltage
gain by a factor of 0.5 is equivalent to a change in gain of —6 dB. Therefore,
the rate of change of gain can be expressed as 6 dB per octave. An alternative
way of expressing the rate of change of gain is to specify the change of gain
for a decade change in frequency (a decade, as its name suggests, is a change
in frequency of a factor of 10). If the frequency falls to 0.1 of its previous
value, the voltage gain will also drop to 0.1 of its previous value. This repres-
ents a change in gain of —20 dB. Thus the rate of change of gain is 20 dB per
decade.

Determine the frequencies corresponding to:

. (a) an octave above 1 kHz;

(b) three octaves above 10 Hz;

 (¢) an octave below 100 Hz;
- (d) a decade above 20 Hz;
% (e) three decades below 1 MHz;

(f) two decades above 50 Hz.

(a) an octave above 1 kHz = 1000 x 2 = 2 kHz

(b) three octaves above 10 Hz=10x 2 x 2 x 2 =80 Hz

(c) an octave below 100 Hz = 100 + 2 = 50 Hz

(d) a decade above 20 Hz = 20 x 10 = 200 Hz

(¢) three decades below 1 MHz = 1,000,000 + 10 + 10 + 10 = 1 kHz
(f) two decades above 50 Hz =50 x 10 x 10 =5 kHz

8.5.4 Frequency response of the high-pass RC network

Figure 8.6 shows the gain and phase response of the circuit of Figure 8.4
for frequencies above and below the cut-off frequency. It can be seen that, at
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Figure 8.6 Gain and phase Gain (dB) 4
responses (or Bode diagram) for (i restr s Frmemmceo oo =z
the high-pass RC network. B e o

Slope = 6 dB/ocrave
=20 dB/decade
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frequencies much greater than the cut-off frequency, the magnitude of the
gain tends to a straight line corresponding to a gain of () dB (that is, a gain
of 1). Therefore, this line (shown dashed in Figure 8.6) forms an asymptote
| to the response. At frequencies much less than the cut-off frequency, the
‘ response tends to a straight line drawn at a slope of 6 dB per octave (20 dB
per decade) change in frequency. This line forms a second asymptote to the
response and is also shown dashed on Figure 8.6. The two asymptotes inter-
sect at the cut-off frequency. At frequencies considerably above or below the
: cut-off frequency, the gain response tends towards these two asymptotes,
4 Near the cut-off frequency, the gain deviates from the two straight lines and
is 3 dB below their intersection at the cut-off frequency.

Figure 8.6 also shows the variation of phase with frequency of the RC net-
work. At frequencies well above the cut-off frequency, the network produces
very little phase shift and its effects may generally be ignored. However,
as the frequency decreases the phase shift produced by the arrangement
F increases, reaching 45° at the cut-off frequency and increasing to 90° at very
low frequencies.

Asymptotic diagrams of gain and phase of the form shown in Figure 8.6
are referred to as Bode diagrams (or sometimes Bode plots). These plot
logarithmic gain (usually in dB) and phase against logarithmic frequency.
Such diagrams are easy to plot and give a useful picture of the characteristic [
of the circuit. We will look at the Bode diagrams for a range of other cir-
cuits in this chapter and then consider how they may be easily drawn and |
used.

It can be seen that the RC network passes signals of some frequencies
with little effect but that signals of other frequencies are attenuated and are
subjected to a phase shift. The network therefore has the characteristics of
a high-pass filter, since it allows high-frequency signals to pass but filters
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out low-frequency signals. We will look at filters in more detail later in this
chapter.

e :;s:—;g:\_]
| g |
i L gmaminea ]

File 8A
i Calculate the cut-off frequency of the circuit of Figure 8.4 if R =1 kQ
and C =1 puF. Simulate the circuit using these component values and
! perform an AC sweep to measure the response over a range from 1 Hz
] to 1 MHz. Plot the gain (in dB) and the phase of the output over this
frequency range, estimate the cut-off frequency from these plots and
compare this with the predicted value. Measure the phase shift at the
estimated cut-off frequency and compare this with the value predicted
above. Repeat this exercise for different values of R and C.

S

BesFdes Ao

T e TR

P T

The circuit of Figure 8.7 shows an RC arrangement similar to the earlier
circuit but with the positions of the resistor and the capacitor reversed.
Applying Equation 8.8 produces

g |
R A Zg £y : oc: .. 1 (8.13)
the : j==t u IptZe ; 1 1+jwCR o
AN i ' T
: j wC
tote ¢ u; —— |,
the "- Comparing this expression with that of Equation 8.9 shows that it has a
) dB i a1 very different frequency characteristic. At low frequencies, @ is small and
) the : Fgwe 8.7 A low-pass RC the value of j@CR is small compared with 1. Therefore, the denominator
ier- i nm”rk' ) pas: of the expression is close to unity and the voltage gain is approximately 1.
v the i ’ At high frequencies, the magnitude of @CR becomes more significant and
: g1 tred 5 : g :
Otes. : the gain of the network decreases. We therefore have a low-pass filter
and arrangement.
b A similar analysis to that in the last section will show that the magnitude
net- . of the voltage gain is now given by
luces 3
5 '1 , 1
EVET, ! | voltage gain | = ———=
ment _ J1+ (wCR)*
very Y ; . L
When the value of @CR is equal to 1, this gives
{
e 8.6 3 | 1 1 070
; oltage gain | = ——= = —= = 0.707
 plot - voltage g: —=rp={
ency. v1+1 ~
Tistic : and again this corresponds to a cut-off frequency. The angular frequency of
r cir- i the cut-off @, corresponds to the condition that @CR = 1, therefore
1 and 3
; 1 1 .
ncics : w, = CR = T rad/s (8.14)
\d are : _ i o ) )
ics of f as before. Therefore the expression for the cut-off frequency is identical to

filters : that in the previous circuit.
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| Example 8.7
o EXE SRR

e ol

Figure 8.8 Phasor diagrams of
the gain of the low-pass network
at different frequencies.

Calculate the time constant T, the angular cut-off frequency @, and
the cyclic cut-off frequency / of the following arrangement.

1 kQ2

T —_— 10 uF | v,

From above

T=CR=10x10"%x1x10°'=0.01 s

w,z—]—:—l—=|{}l)rad/s
T 0.01

(
ro B M0 56 s
' n 2w

While the cut-off frequency of this circuit is identical to that of the previous
arrangement, you should note that in the circuit of Figure 8.4 the cut-off
attenuates low-frequency signals and is therefore a low-frequency cut-off.
However, in the circuit of Figure 8.7 high frequencies are attenuated, so this
circuit has a high-frequency cut-off.

Substituting into Equation 8.13 gives

7, 1 1 1

S ey = (8.15)
v, 1+joCR l+j-;)— 1L

g §

You might like to compare this with the expression for a high-pass network
in Equation 8.12. As before, we can investigate the behaviour of this arrange-
ment in different frequency ranges.

8.6.1 Whenf<f
When the signal frequency /'is much lower than the cut-off frequency /),
then in Equation 8.15 f// is much less than unity, and the voltage gain is
approximately equal to 1. The imaginary part of the gain is negligible and the
gain of the circuit is effectively real. This situation is shown in the phasor
diagram of Figure 8.8(a).

Im A

|A]=10

[A|=Lif

(a)f </ (b)f=£ )/ = [
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8.6.2 When f=TF,

When the signal frequency /[ is equal to the cut-off frequency [/, then Equa-
tion 8.15 becomes

Multiplying the numerator and the denominator by (1 —)) gives

o, (=) _ (-

v, (+j)i-j) 2

This is illustrated in the phasor diagram of Figure 8.8(b), which shows that
the magnitude of the gain at the cut-off frequency is 0.707 and the phase
angle of the gain is —45°. This shows that the output voltage lags the input
voltage by 45°. The gain is therefore 0.707£-45°.

='0:5= 0.5

8.6.3 When f> f,

At high frequencies /7f; is much greater than 1, and Equation 8.15 becomes

VAR
The *j’ signifies that the gain is imaginary, and the minus sign indicates that
the output lags the input. This is shown in the phasor diagram of Figure
8.8(c). The magnitude of the gain is simply /. //and, since /| is a constant, the
voltage gain is inversely proportional to frequency. If the frequency is
halved, the voltage gain will be doubled. Therefore, the rate of change of gain
can be expressed as —6 dB/octave or =20 dB/decade.

8.6.4 Frequency response of the low-pass RC network

Figure 8.9 shows the gain and phase responsc (or Bode diagram) of the low-
pass network for frequencies above and below the cut-off frequency. The
magnitude response is very similar in form to that of the high-pass network
shown in Figure 8.6, with the frequency scale reversed. The phase response
is a similar shape to that in Figure 8.6, but here the phase goes from 0° to
—90° as the frequency is increased, rather than from +90° to 0° as in the pre-
vious arrangement. From the figure it is clear that this 1s a low-pass filter
arrangement.
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Figure 8.9 Gain and phase
responses (or Bode diagram) for
the low-pass RC network.
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Gain (dB) 4
0fF-

\/’ Slope =6 dB/octave

=--20 dB/decade

Log frequency

Phase shift #

1

s b U i i e B i s v g e e i s e el

90° : >
Log frequency

Calculate the cut-off frequency of the circuit of Figure 8.7 if R = 1 kQ
and C= 1 uF. Simulate the circuit using these component values and
perform an AC sweep to measure the response over a range from 1 Hz
to 1 MHz. Plot the gain (in dB) and the phase of the output over this
frequency range, estimate the cut-off frequency from these plots and
compare this with the predicted value. Measure the phase shift at the
estimated cut-off frequency and compare this with the value predicted
above. Repeat this exercise for different values of R and C.

High-pass and low-pass arrangements may also be formed using combinations
of resistors and inductors. Consider for example the circuit of Figure 8.10. This
shows a circuit similar to that of Figure 8.4, but with the capacitor replaced
by an inductor. If we apply a similar analysis to that used above, we obtain

v, Zy R 1

Pt — = 816
v, Zp+Z, R+joL . L (=:16)

A similar analysis to that in the last section will show that the magnitude of
the voltage gain is now given by

1

| voltage gain | = ———

|
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Figure 8.10 A low-pass RL L
network.

L

O

When the value of @ /R is equal to 1, this gives

; 1 S
] | voltage gain | = —=—= = — = 0.707
; v1+1 V2

and this corresponds to a cut-off frequency. The angular frequency of the
cut-off @, corresponds to the condition that wL/R = 1, therefore

w‘.=§=+rad/s (8.17)

As before, T is the time constant of the circuit, and in this case T is equal to
L/R.

| = Calculate the time constant T, the angular cut-off frequency @, and
~ ¢ the cyclic cut-off frequency /; of the following arrangement.

2

nd _. 10 mH

1z ; :

1S j

nd 100Q] v,

he

ed o
j From above
1 L 10x107
T:—:-liz ) s

tions : R 100

This : i 1 1

aced : W,=—=———-=10*rad/s

. L ‘ 4

ain T 1x10
b o, 1x10*

_ i fi=—= =1.59 kHz

3.16) 4 21 2n
’ Substituting into Equation 8.16, we have

le of
D, oo 1 o 1 i 1 § g
: l+jw— 1+j— 1+j~—
i R ®, §
; This expression is identical to that of Equation 8.15, and thus the frequency

behaviour of this circuit is identical to that of the circuit of Figure 8.7.
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Calculate the cut-off frequency of the circuit of Figure 8.10if R = 10 Q
and L =5 mH. Simulate the circuit using these component values and
perform an AC sweep to measure the response over a range from 1 Hz
to 1 MHz. Plot the gain (in dB) and the phase of the output over this
frequency range, estimate the cut-off frequency from these plots and
compare this with the predicted value. Measure the phase shift at the
estimated cut-off frequency and compare this with the value predicted
above. Repeat this exercise for different values of R and L.

Interchanging the components of Figure 8.10 gives the circuit of Figure 8.11.
Analysing this as before, we obtain

L v, L Zl. £ ’G)L o 1 8 | 819
" R v, Zx+Z;, R+joL 1 R {ig R Yt}
: JwL wl.

i v Lo |, If we substitute @, = R/ L as before, this gives

| | S v, 1 1 1 -
o = = (8.20)
Figure 8.11 A high-pass RL oy s ]i i ]ﬁ jf‘_

;',_ network. oL @ J

This expression is identical to that of Equation 8.12, and thus the frequency
behaviour of this circuit is identical to that of the circuit of Figure 8.4.

: File 8D

3 Calculate the cut-off frequency of the circuit of Figure 8.11 if R =10 Q
' and L =5 mH. Simulate the circuit using these component values and
perform an AC sweep to measure the response over a range from 1 Hz
& to 1 MHz. Plot the gain (in dB) and the phase of the output over this
. frequency range, estimate the cut-off frequency from these plots and
E compare this with the predicted value. Measure the phase shift at the
estimated cut-off frequency and compare this with the value predicted
i above. Repeat this exercise for different values of R and L.

VR of%aml From the above it is clear that RC and R/ circuits have many similarities. The

g networks bchaviuur ol"thc lt:ircuits we ha\:'c considered 1s s!.tmmariscd n ?*‘igurc 8.12.

SRS Each of the circuits has a cut-off frequency, and in each case this frequency
is determined by the time constant T of the circuit. In the RC circuits
T=CR, and in the RL circuits T = L/R. In each case the angular cut-off
frequency is then given by @ =1/T and the cyclic cut-off frequency by
[ =/2x.
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Two of the circuits of Figure 8.12 have high-frequency cut-offs (low-pass
circuits), and two have low-frequency cut-offs (high-pass circuits). Trans-
posing the components in a particular circuit will change it from a high-pass
to a low-pass circuit, and vice versa. Replacing a capacitor by an inductor, or
replacing an inductor by a capacitor, will also change it from a high-pass to
a low-pass circuit, and vice versa.

File BE

Calculate the time constants of the circuits of Figure 8.12 if R =1 k£,
C=1nF and L = | mH. Simulate the first of these circuits (using these
component values) and use an AC sweep to plot the gain and phase
responses of the circuit (as in the earlier simulation exercises in this
chapter). Make a note of the cut-off frequency and confirm that this is
a low-frequency cut-off. Now interchange the capacitor and resistor
and again plot the circuit’s characteristics. Note the effect on the cut-off
frequency and the nature of the cut-off (that is, whether it is now a
high- or a low-frequency cut-off).
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Replace the capacitor by an inductor of 1 mH and again note the
effect on the cut-off frequency and the nature of the cut-off. Finally,
interchange the inductor and resistor and repeat the analysis. Hence
confirm the form of the characteristics given in Figure 8.12.

Earlier we looked at Bode diagrams (also called Bode plots) as a means of
describing the gain and phase response of a circuit (as in Figures 8.6 and 8.9),
In the circuits we have considered, the gain at high and low frequencies has an
asymptotic form, greatly simplifying the drawing of the diagram. The phase
response is also straightforward, changing progressively between defined limits,
It is often sufficient to use a ‘straight-line approximation’ to the Bode dia-
i gram, simplifying its construction. For the circuits shown in Figure 8.12, we
" can construct the gain section of these diagrams simply by drawing the two
asymptotes. One of these will be horizontal, representing the frequency
range in which the gain is approximately constant. The other has a slope of
+6 dB/octave (+20 dB/decade) or —6 dB/octave (=20 dB/decade), depend-
ing on whether this is a high-pass or low-pass circuit. These two asymptotes
cross at the cut-off frequency of the circuit. The phase section of the response
is often adequately represented by a straight-line transition between the two
limiting values. The position of this line is defined by the phase shift at the
) cut-off frequency, which in these examples is 45°. A reasonable approxima-
il tion to the response can be gained by drawing a straight line with a slope of
3 —45°/decade through this point. Using this approach, the line starts one
decade below the cut-off frequency and ends one decade above, making it
very easy to construct. Straight-line approximations to the Bode diagrams
i for the circuits shown in Figure 8.12 are shown in Figure 8.13.
Once the straight-line Bode plots have been constructed, it is simple to
| convert these to a more accurate curved-line form if required. This can
4 usually be done by eye by noting that the gain at the cut-off frequency is
1 —3 dB, and that the phase response is slightly steeper at the cut-off frequency
and slightly less steep near cach end than the straight-line approximation.
This is illustrated in Figure 8.14.

Figure 8.13 Simple straight- A, 4
line Bode diagrams. 1 s ‘
: Slope Slope
' =+6dB/octave =-6 dB/octave
v =+20 dB/decade = =20 dB/decade
| _ e
= [ . =
/; L
g A g A
90° Slope 07 = Slope
=—457/decade i =—45" dB/decade
il e e e L el i
: ;|
o° _1 - - f —9q° : I . JI'
L f 10/ 0 f [

(a) High-pass circuit (b) Low-pass circuit
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Figure 8.14 Drawing Bode

A, A
i diagrams from their straight-line
[ approximations.
{
;
|
‘! 9 A 9 A
1S an :
hase ! : !
1 ] Ir B ]
ml“ ¥ : 0° f{ A -90° 2
-dia- 3 e I
2, we : (a) High-pass circuit (b) Low-pass circuit
: two
ency :
pe of i
end- !
totes : While simple circuits may produce a single cut-off frequency, more complex
YONse  several stages circuits often possess a number of elements that each have some form of fre-
e tWO e quency dependence. Thus a circuit might have both high-pass and low-pass
it the characteristics, or might have several high- or low-pass elements.
<ima- ; One of the advantages of the use of Bode diagrams is that they make it
pe of 1 very easy to see the effects of combining several different elements. We

s one : noted in Section 8.3 that, when several stages of amplification are connected
ing it ~ in series, the overall gain is equal to the product of their individual gains, or
Frams | the sum of their gains when these are expressed in decibels. Similarly, the
; phase shift produced by several amplifiers in series is equal to the sum of the
!

ple to _ phase shifts produced by each amplifier separately. Therefore, the combined
is can effects of a series of stages can be predicted by ‘adding’ the Bode diagrams of
ncy is ; each stage. This is illustrated in Figure 8.15, which shows the cffects of com-
uency ; bi})iﬂg a high-pass and a low-pass element. In this case, the cut-off frequency
Jation. of the high-pass element is lower than that of the low-pass element, resulting

|

| Figure 8.15 The combined

A cffects of high- and low-pass 1

M clements.
! 4,
de 0

! 0 ]

90° 0°

0° : £ =900

(a) High-pass circuit (b} Low-pass circuit (c) Band-pass circuit
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Figure 8.16 Combinations of
multiple high- and low-pass
clements,

in a band-pass filter characteristic as shown in Figure 8.15(c). Such a
circuit passes a given range of frequencies while rejecting lower- and high-
frequency components.

Bode diagrams can also be used to investigate the effects of combining
more than one high-pass or low-pass element. This is illustrated in Figure
8.16, which shows the effects of combining two elements that cach contain
a single high- and a single low-pass element. In this case, the cut-off fre-
quencies of each element are different, resulting in four transitions in the
characteristic. For obvious reasons, these frequencies are known as break or
corner frequencies.
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In Figure 8.16, the first element is a band-pass amplifier that has a gain of
A dB within its pass band, a low-frequency cut-off of /; and a high-frequency
cut-off of f;. The second element is also a band-pass amplifier, this time
with a gain of B dB, a low-frequency cut-off of f; and a high-frequency cut-
off of /;. Within the frequency range from /; to /;, the gains of both amplifiers
are approximately constant, so the gain of the combination is also appro-
ximately constant, with a value of (4 + B) dB. In the range £; to /i, the gain
of the second amplifier is approximately constant, but the gain of the first
falls at a rate of 6 dB/octave. Therefore, in this range the gain of the com-
bination also falls at 6 dB/octave. At frequencies above f;, the gain of both
amplifiers is falling at a rate of 6 dB/octave, so the gain of the combination
falls at 12 dB/octave. A similar combination of effects causes the gain to fall
at first by 6 dB/octave, and then by 12 dB/octave as the frequency decreases
below f;. The result is a band-pass filter with a gain of (A + B).

Within the pass band both amplifiers produce relatively little phase shift.
However, as we move to frequencies above f; the first amplifier produces
a phase shift that increases to —90°, and as we move above /, the sccond
amplifier produces an additional shift, taking the total phase shift to —180°.
This effect is mirrored at low frequencies, with the two amplifiers producing
a total phase shift of +180° at very low frequencies.

While the arrangement represented in Figure 8.16 includes a total of
two low-frequency and two high-frequency cut-offs, clearly more complex
arrangements can include any number of cut-offs. As more are added, cach
introduces an additional 6 dB/octave to the maximum rate of increase or
decrease of gain with frequency, and also increases the phase shift introduced
at high or low frequencies by 90°.

8.12.1 Series RLC circuit

Having looked at RC and RL circuits, it is now time to look at circuits
containing resistance, inductance and capacitance. Consider for example
the series arrangement of Figure 8.17. This can be analysed in a similar
manner to the circuits discussed above, by considering it as a potential
divider. The voltages across each component can be found by dividing its
complex impedance by the total impedance of the circuit and multiplying
this by the applicd voltage. For example, the voltage across the resistor is
given by

V= ¥ X Ze X 2 (8.21)
W= . =) 2
y Ze ]
Zgd 2+ L R+joL + —

joC

It is also interesting to consider the impedance of this arrangement, which is
given by

_I‘=R+ij—-l— (8.22)

Z=R+joL + .22
joC wC

It can be seen that, if the magnitude of the reactance of the inductor and
the capacitor are equal (that is, if @L = 1/@C), the imaginary part of the
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Figure 8.18 Variation of
current with frequency for a
series RLC arrangement.
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impedance is zero. Under these circumstances, the impedance of the arrange-
ment is simply equal to R. This condition occurs when
1 5 1 1

wl = — "= )= _In'—
wC LG VLC

This situation is referred to as resonance, and the frequency at which it
occurs is called the resonant frequency of the circuit. An arrangement
that exhibits such behaviour is known as a resonant circuit. The angular
frequency at which resonance occurs is given the symbol ®,, and the
corresponding cyclic frequency is given the symbol ;. Therefore

1
W= —— (8.23)
vLC
1
o= (8.24)
2nvLC

From Equation 8.22 it is clear that in the circuit of Figure 8.17 the imped-
ance i1s at a minimum at resonance, and therefore the current will be at a
maximum under these conditions. Figure 8.18 shows the current in the
circuit as the frequency varies above and below resonance. Since the current
is at a maximum at resonance, it follows that the voltages across the capacitor
and the inductor are also large. Indeed, at resonance the voltages across
these two components can be many times greater than the applied voltage.
However, these two voltages are out of phase with each other and therefore
cancel out, leaving only the voltage across the resistor.

We noted in Chapter 7 that power is not dissipated in capacitors or induc-
tors but that these components simply store energy before returning it to
the circuit. Therefore, the current flowing into and out of the inductor
and capacitor at resonance results in energy being repeatedly stored and
returned. This allows the resonant effect to be quantified by measuring the
ratio of the energy stored to the energy dissipated during each cycle. This
ratio is termed the quality factor or Q of the circuit. Since the energies
stored in the inductor and the capacitor are equal, we can choose either of
them to calculate Q. If we choose the inductor, we have

X, X
I*R R

quality factor Q =

Bandwidth
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and if we choose the capacitor, we have
1y -
i .

quality factor O = IR R

(8.26)
If we take either of these expressions and multiply top and bottom by [, we
get the corresponding voltages across the associated component. Therefore,
0 may also be defined as

Ve Ve
quality factor Q = —= == (8.27)
Ve Vi

Since at resonance V7 is equal to the supply voltage, it follows that

ialiny Bactir = voltage across L or C at resonance (8.28)
supply voltage

and thus Q represents the voltage magnification at resonance.
Combining Equations 8.23 and 8.28 gives us an expression for the Q of a
series RLC circuit, which is

gaifE)
“7\\C (8.29)

The series RLC circuit is often referred to as an acceptor circuit, since
it passes signals at frequencies close to its resonant frequency but rejects
signals at other frequencies. We can define the bandwidth B of a resonant
circuit as the frequency range between the points where the gain (or in this
case the current) falls to 1/72 (or 0.707) times its mid-band value. This is
illustrated in Figure 8.18. An example of an application of an acceptor
circuit is in a radio, where we wish to accept the frequencies associated with
a particular station while rejecting others. In such situations, we need a reson-
ant circuit with an appropriate bandwidth to accept the wanted signal while
rejecting unwanted signals and interference. The ‘narrowness’ of the band-
width is determined by the Q of the circuit, and it can be shown that the
resonant frequency and the bandwidth are related by the expression

resonant frequency  f

uality factor 0 =
quality fackor O bandwidth B

(8.30)
Combining Equations 8.24, 8.29 and 8.30, we can obtain an expression for
the bandwidth of the circuit in terms of its component values. This is

R
2l

B=

Hz (8.31)

It can be seen that reducing the value of R increases the Q of the circuit
and reduces its bandwidth. In some situations it is desirable to have very
high values of Q, and Equation 8.29 would suggest that if the resistor were
omitted (effectively making R =0) this would produce a resonant circuit
with infinite Q. However, in practice all real components exhibit resistance
(and inductors are particularly ‘non-ideal’ in this context), so the O of such
circuits is limited to a few hundred.
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For the following arrangement, calculate the resonant frequency
the impedance of the circuit at this frequency, the quality factor 0
of the circuit and its bandwidth B.

58 uF  13mH

From Equation 8.24

.f;}: +
2y LC
) 1
215107 x 30 x 10
=237 H

- At the resonant frequency the impedance is equal to R, so Z = 5 Q.
From Equation 8.29

(L) 1 [15x10%)
o= [Z]=1 15X _, 4
R\\C) 5Y(30x107
- and from Equation 8.31

it o ) 53R
2nl. 2mx15%x10°

Simulate a circuit that applies a sinusoidal voltage to the arrangement of
Example 8.9 and use an AC sweep to plot the variation of current with
frequency. Measure the resonant frequency of the arrangement and its
bandwidth, and hence calculate its Q. Measure the peak current in the
circuit and, from a knowledge of the excitation voltage used, estimate
the impedance of the circuit at resonance. Hence confirm the findings of
Example 8.9 above.

8.12.2 Parallel RLC circuit
Consider now the parallel circuit of Figure 8.19. The impedance of this cir-
cuit is given by

Z= 1 = ] (8.32)

bor 1 1 1
— 4+ joC + AN N g R
P ) oL + 1((% wLJ

R

and it is clear that this circuit also has a resonant characteristic. When @C =
1/@L, the term within the brackets is equal to zero and the imaginary part
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Figure 8.19 A parallel RLC
arrangement.
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of the impedance disappears. Under these circumstances, the impedance is
purely resistive, and Z = R. The frequency at which this occurs is the reson-
ant frequency, which is given by

]
w( = —
wl.
) |
w =—
LG
1
W= —
VLC

which is the same as for the series circuit. Therefore, as before, the resonant
angular and cyclic frequencies are given by

1
Wy = ~——=—= (8.33)
'\lfL(J‘
1
g (8.34)
2ny LC

From Equation 8.32, it is clear that the impedance of the parallel reson-
ant circuit is a maximum at resonance and that it decreases at higher and
lower frequencies. This arrangement is therefore a rejector circuit, and
Figure 8.20 shows how the current varies with frequency.

As for the series resonant circuit, we can define both the bandwidth B and
the quality factor Q for the parallel arrangement (although the definitions of
these terms are a little different). The corresponding expressions for these
quantities are

|Ir (d‘
=R =2
2 \l‘l L

(8.35)
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Table 8.2 Secries and parallel resonant circuits.

Series resonant circuit

Parallel resonant circuit

Circuit 2 i C
| v C’\D R / pm—
. . ! 1
Impedance, Z Z=R+j|lwl - — Z=
wC o]
— + 1[(0(1 - -—]
wl.
. 1 ! 1

Resonant frequency, f; 1o — Jo —

2nViLC 2nVLC

(L c

|
uality factor, ) =— || = =R (| =

Sty e * Rv[_c] & V[;,]

R I
Bandwidth, B b= Hz =

2r L 2nRC

and
| .
= Hz (8.36)
2tRC

Figure 8.21 An LC resonant

circuit.

A comparison between series and parallel resonant circuits is shown in
Table 8.2. It should be noted that in a series resonant circuit QO is increased
by reducing the value of R, while in a parallel resonant circuit 0 is increased
by increasing the value of R, In each case, Q is increased when the losses are

reduced.

While the circuit of Figure 8.19 represents a generalised parallel RLC cir-
cuit, it is not the most common form, In practice, the objective is normally
to maximise the Q of the arrangement, and this is achieved by removing the
resistive element. However, in practice all inductors have appreciable resist-
ance, so 1t is common to model this in the circuit as shown in Figure 8.21.
Capacitors also exhibit resistance, but this is generally quite small and can

often be ignored.
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The resonant frequency of the circuit of Figure 8.21 is given by

— c
— i i SIS N (837)
= | - — 37

; 2e\LC I?

—C _ As the resistance of the coil tends to zero, this expression becomes equal to
v that of Equation 8.34. This circuit has similar characteristics to the earlier
i | parallel arrangement and has a Q given by
: SRS

L

2= 1 (8.38)

RC -

| ~ Filters
8.13.1 RC filters

Earlier in this chapter we looked at RC high-pass and low-pass networks and
noted that these have the characteristics of filters since they pass signals of
certain frequencies while attenuating others. These simple circuits, which
contain only a single time constant, are called first-order or single-pole
filters. Circuits of this type are often used in systems to select or remove
components of a signal. However, for many applications the relatively slow
roll-off of the gain (6 dB/octave) is inadequate to remove unwanted signals
effectively. In such cases, filters with more than one time constant are used
to provide a more rapid roll-off of gain. Combining two high-pass time con-
, stants produces a second-order (two-pole) high-pass filter in which the gain
8.36) will roll off at 12 dB/octave (as seen in Section 8.11). Similarly, the addition

it

- e e

_ar.

ip

-

I of three or four stages can produce a roll-off rate of 18 or 24 dB/octave.
Vi in _ In principle, any number of stages can be combined in this way to produce
eased 3 an nth-order (n-pole) filter. This will have a cut-off slope of 6z dB/octave
eased and produce up to n X 90° of phase shift. It is also possible to combine high-
¢s are ] pass and low-pass characteristics into a single band-pass filter if required.

For many applications, an ideal filter would have a constant gain and
C cir- | zero phase shift within one range of frequencies (its pass band) and zero
mally L gain outside this range (its stop band). The transition from the pass band
1g the i to the stop band occurs at the corner frequency f;. This is illustrated for a
resist- low-pass filter in Figure 8.22(a).

- 8.21. S | Unfortunately, although adding more stages to the RC filter increases the
d can ultimate rate of fall of gain within the stop band, the sharpness of the ‘knee’ of
| the response is not improved (see Figure 8.22(b)). To produce a circuit that
more closely approximates an ideal filter, different techniques are required.

e B s

;| 8.13.2 LC filters

by

The combination of inductors and capacitors allows the production of filters

j with a very sharp cut-off. Simple LC filters can be produced using the series
} and parallel resonant circuits discussed in the last section. These are also
i known as tuned circuits and are illustrated in Figure 8.23.

_ These combinations of inductors and capacitors produce narrow-band

filters with centre frequencies corresponding to the resonant frequency of
the tuned circuit, so

il
4
i

A8
{
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Figure 8.22 (Gain responses of

ideal and real low-pass filters,

Figure 8.23 1.C filters.
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(8.39)

The bandwidth of the filters is determined by the quality factor 0 as dis-
cussed in the last section.

Other configurations of inductors, capacitors and resistors can be used to
form high-pass, low-pass, band-pass and band-stop filters and can achieve
very high cut-off rates.
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8.13.3 Active filters

Although combinations of inductors and capacitors can produce very high-
performance filters, the use of inductors is inconvenient since they arc expen-
sive, bulky and suffer from greater losses than other passive components.
Fortunately, a range of very effective filters can be constructed using an
operational amplifier and suitable arrangements of resistors and capacitors.
Such filters are called active filters, since they include an active component
(the operational amplifier) in contrast to the other filters we have discussed,
which are purely passive (ignoring any buffering). A detailed study of the
operation and analysis of active filters is beyond the scope of this text, but it
is worth looking at the characteristics of these circuits and comparing them
with those of the RC filters discussed carlier.

To construct multiple-pole filters, it is often necessary to cascade many
stages. If the time constants and the gains of each stage are varied in a defined
manner, it is possible to create filters with a wide range of characteristics.
Using these techniques, it is possible to construct filters of a number of dif-
ferent types to suit particular applications.

In simple RC filters, the gain starts to fall towards the edge of the pass
band and so is not constant throughout the band. This is also true of active
filters, but here the gain may actually rise towards the edge of the pass band
before it begins to fall. In some circuits the gain fluctuates by small amounts
right across the band. These characteristics are illustrated in Figure 8.24.

The ultimate rate of fall of gain with frequency for any form of active
filter is 6m dB/octave, where n is the number of poles in the filter, which is
often equal to the number of capacitors in the circuit. Thus the performance
of the filter in this respect is related directly to circuit complexity.

Although the ultimate rate of fall of gain of a filter is defined by the num-
ber of poles, the sharpness of the ‘knee’ of the filter varies from one design
to another. Filters with a very sharp knee tend to produce more variation in
the gain of the filter within the pass band. This 1s illustrated in Figure 8.24,
where it is apparent that filters B and C have a more rapid roll-off of gain
than filter A but also have greater variation in their gain within the pass band.

Of great importance in some applications is the phase response of the
filter: that is, the variation of phase lag or lead with frequency as a signal
passes through the filter. We have seen that RC filters produce considerable
amounts of phase shift within the pass band. All filters produce a phase shift

Gain
(dB)

L e T O it Filter A
Filter B
Filter C
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that varies with frequency. The way in which it is related to frequency varie
from one type of filter to another. The phase response of a filter is of par
ticular importance where pulses are to be used.

A wide range of filter designs are available, enabling one to be selected t
favour any of the above characteristics. Unfortunately, the requirements o
cach are often mutually exclusive, so there is no universal optimum design
and an appropriate circuit must be chosen for a given application. From the
myriad of filter designs, three basic types are discussed here, first becaust
they are widely used and second because they are each optimised for a par-
ticular characteristic.

The Butterworth filter is optimised to produce a flat response within it
pass band, which it does at the expense of a less sharp ‘knee’ and a less than
ideal phase performance. This filter is sometimes called a maximally flat
filter as it produces the flattest response of any filter type.

The Chebyshev filter produces a sharp transition from the pass band
to the stop band but does this by allowing variations in gain throughout the
pass band. The gain ripples within specified limits, which can be selected
according to the application. The phase response of the Chebyshev filter is
poor, and it creates serious distortion of pulse waveforms.

The Bessel filter is optimised for a linear phase response and is some-
times called a linear phase filter. The ‘knee’ is much less sharp than for the
Chebyshev or the Butterworth types (though slightly better than a simple
RC filter), but its superior phase characteristics make it preferable in many
applications, particularly where pulse waveforms are being used. The phase
shift produced by the filter is approximately linearly related to the input fre-
quency. The resultant phase shift therefore has the appearance of a fixed
time delay, with all frequencies being delayed by the same time interval. The
result is that complex waveforms that consist of many frequency components
(such as pulse waveforms) are filtered without distorting the phase relation-
ships between the various components of the signal. Each component is
simply delayed by an equal time interval.

Figure 8.25 compares the characteristics of these three types of filter. Parts
(a), (b) and (c) show the frequency responses for Butterworth, Chebyshev
and Bessel filters, each with six poles (the Chebyshev is designed for (.5 dB
ripple), while (d), (e) and (f) show the responses of the same filters to a step
input.

Over the years a number of designs have emerged to implement various
forms of filter. The designs have different characteristics, and each has
advantages and disadvantages. We will look at examples of active filter cir-
cuits in Chapter 15, when we look at operational amplifiers.

While active filters have several advantages over other forms of filter, it
should be noted that they rely on the operational amplifier having sufficient
gain at the frequencies being used. Active filters are widely used with audio
signals (which are limited to a few tens of kilohertz) but are seldom used at
very high frequencies. In contrast, LC filters can be used very successfullyal
frequencies up to several hundred megahertz. At very high frequencies, :
range of other filter elements are available including SAW, ceramic and |
transmission line filters.
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Figure 8.25 A comparison of
Butterworth, Chebyshev and
Bessel filters.
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While many circuits will include a number of capacitors and inductors that
have been intentionally introduced by the circuit designer, a// circuits also
include additional ‘unintended’ stray capacitances and stray inductances
(as discussed in Chapters 4 and 5). Stray capacitance tends to introduce
unintended low-pass filters in circuits, as illustrated in Figure 8.26(a). It also
produces unwanted coupling of signals between circuits, resulting in a
number of undesirable effects such as cross-talk. Stray inductance can also
produce undesirable effects. For example, in Figure 8.26(b) a stray induct-
ance L, appears in series with a load resistor, producing an unintended
low-pass effect. Stray effects also have a dramatic effect on the stability of
circuits. This is illustrated in Figure 8.26(c), where stray capacitance &
across an inductor L results in an unintended resonant circuit. We will
return to look at stability in more detail in Chapter 22.

Stray capacitances and inductances are generally relatively small and
therefore tend to be insignificant at low frequencies. However, at high
frequencies they can have dramatic effects on the operation of circuits. In
general, 1t is the presence of these unwanted circuit elements that limits the
high-frequency performance of circuits.
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Figure 8.26 'The effects of R L

stray capacitance and inductance.

Key points * The reactance of capacitors and inductors is dependent on fre-
quency. Therefore, the behaviour of any circuit that contains these,

;’ components will change with frequency. _
* Since all real circuits include stray capacitance and stray inductance, -
all real circuits have characteristics that change with frequency. |
* Combinations of a single resistor and a single capacitor, or a single -
resistor and a single inductor, can produce circuits with a single high-
or low-frequency cut-off. In each case, the angular cut-off frequency
®, is given by the reciprocal of the time constant T of the circuit.
f + For an RC circuit T = CR, while in an RL circuit T=L/R.
» These single time constant circuits have certain similar characteristics:
their cut-off frequency /. = @./2n = 1/2xT,

|

at frequencies well away from their cut-off frequency within their
pass band, they have a gain of 0 dB and zero phase shift;
— at their cut-off frequency, they have a gain of -3 dB and 145°
phase shift;
g — at frequencies well away from their cut-off frequency within their -
] stop band, their gain changes by 36 dB/octave (£20 dB/decade) -
and they have a phase shift of £90°.
* (ain and phase responses are often given in the form of a Bode dia-
gram, which plots gain (in dB) and phase against log frequency.

» When several stages are used in series, the gain of the combination at

a given frequency is found by multiplying their individual gains,

while the phase shift is found by adding their individual phase shifts.

1 » Combinations of resistors, inductors and capacitors can be analysed
i using the tools covered in earlier chapters. Of particular interest is
the condition of resonance, when the reactance of the capacitive and
a:- inductive elements cancels. Under these conditions, the impedance
a4 of the circuit is simply resistive.
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The ‘sharpness’ of the resonance is measured by the quality factor Q.

* Simple RC and RL circuits represent first-order, or single-pole,
filters. Although these are useful in certain applications, they have a
limited ‘roll-off’ rate and a soft ‘knee’.

* Combining several stages of RC filters increases the roll-off rate but

does not improve the sharpness of the knee. Higher performance can

be achieved using LC filters, but inductors are large, heavy and have
; high losses.

* Active filters produce high performance without using inductors.
Several forms are available to suit a range of applications.
* Stray capacitance and stray inductance limit the performance of all
high-frequency circuits.
i bercises
B 81 Calculate the reactance of a 1 pF capacitor at a fre- 8.7 Simulate the arrangement of Exercise 8.6 and use an

s quency of 10 kHz, and the reactance of a 20mH 553 AC sweep to display the gain response. Measure the
inductor at a frequency of 100 rad/s. In each case cut-off frequency of the circuit and hence confirm
include the units in vour answer. vour results for the previous exercise.

S8 8.2 Expressanangular frequency of 250 rad/sasacyclic 8.8  Determine the frequencies that correspond to:

frequency (in Hz). (a) an octave below 30 Hz;
§ 83 Express a cyclic frequency of 250 Hz as an angular (b) two octaves above 25 kHz;
: frequency (in rad/s). (¢) three octaves above | kHz;
' 84 Determine the transfer function of the following (d) adecade above 1 MHz;

el circuit. (¢) two decades below 300 Hz;
(f) three decades above 50 Hz,

C R, 8.9 (alculate the time constant T, the angular cut-off
frequency @ and the cyclic cut-off frequency / of
:. the following arrangement. Is this a high- or a low-
. : i B |5 frequency cut-off?

. “: 1800 €2

| " !

85 A series RC circuit is formed from a resistor of v o
3 33k and a capacitor or 15 nl. What is the time
' constant of this circuit?

* L 86 Calculate the time constant T, the angular cut-off  g8.10
1 frequency @, and the cyclic cut-off frequency f of ==
[ the following arrangement. Is this a high- or a low-

; frequency cut-off?

Simulate the arrangement of Exercise 8.9 and use an
AC sweep to display the gain response, Measure the
cut-off frequency of the circuit and hence confirm
vour results for the previous exercise.
57 | 8.11 A parallel RL circuit is formed from a resistor of
L ”TI“F 150 € and an inductor of 30 mH. What is the time
: 1 constant of this circuit?
8.12 Calculate the time constant T, the angular cut-off
g G'U) frequency @, and the cyclic cut-off frequency f of
the following arrangement. Is this a high- or a low-
i - o frequency cut-off?
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Exercises continued

S mH

Y, 12 | o

[

Simulate the arrangement of Exercise 8.12 and use

=% an AC sweep to display the gain response. Measure

8.14

8.16

the cut-off frequency of the circuit and hence
confirm your results for the previous exercise.
Calculate the time constant T, the angular cut-off
frequency @, and the cyclic cut-off frequency / of
the following arrangement. Is this a high- or a low-
frequency cut-off?

25 mH

1 200 | o,

“Ch

Simulate the arrangement of Exercise 8.14 and use

! an AC sweep to display the gain response. Measure
the cut-off frequency of the circuit and hence
confirm your results for the previous exercise.
Sketch a straight-line approximation to the Bode
diagram of the circuit of Exercise 8.14. Use this
approximation to produce a more realistic plot of the
gain and phase responses of the circuit,

8.17

8.18
8.19

TERISTICS OF AC CIRCUITS

A circuit contains three high-freq uency cut-offs and
two low-frequency cut-offs. What are the rates of
change of gain of this circuit ar very high and very
low frequencies?

Explain what is meant by the term ‘resonance’,
Calculate the resonant frequency f;, the quality factor
Q and the bandwidth B of the following circuit.

3IQ  2uF s0mH

Simulate a circuit that applies a sinusoidal voltage to

et - !
2] the arrangement of Exercise 8.19 and use an AC sweep

8.21

8,22

8.23

8.24

8.25

8.26

to plot the variation of current with frequency,
Measure the resonant frequency of the arrangement
and its bandwidth, and hence calculate its 0. Hence
confirm your results for the previous exercise.
Explain the difference between a passive and an
active filter.

Why are inductors often avoided in the construction
of filters?

What form of active filter is optimised to produce a
flat response within its pass band?

What form of active filter is optimised to produce a
sharp transition from the pass band to the stop band?
What form of filter is optimised for a linear phase
response’?

Explain why stray capacitance and stray inductance
affect the frequency response of electronic circuits,




