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R chapter nine  Transient Behaviour
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- factor
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lfﬂgc to ~ | When you have studied the material in this chapter, you should be able to:
«SWESH » explain concepts such as steady-state response, transient response and total response as they apply
juences to electronic circuits
pemens s describe the transient behaviour of simple RC and RL circuits
- Hengs |, predict the transient response of a generalised first-order system from a knowledge of its initial and
B " final values
and an ", sketch Increasing or decreasing waveforms and identify their key characteristics
’ + describe the output of simple RC and RL circuits in response to a square-wave input
tructigs » outline the transient behaviour of various forms of second-order systems.
oducea o
FOdUC‘-’i‘ i ; Imanﬂion In earlier chapters, we looked at the behaviour of circuits in response fo
»p band? either fixed DC signals or constant AC signals. Such behaviour is often
ar phase referred to as the steady-state response of the system. Now it is time to
- turn our attention to the performance of circuits before they reach this
uctance

. steady-state condition: for example, how the circuits react when a voltage or
ATCUNLs. current source is initially turned on or off. This is referred to as the tran-
B sient response of the circuit.
4 We will begin by looking at simple RC and RL circuits and then progress
to more complex arrangements.

u Charging of

capacitors and Capacitor charging
_energising of
_inductors Figure 9.1(a) shows a circuit that charges a capacitor C from a voltage source

I through a resistor R. The capacitor is assumed to be initially uncharged,
and the switch in the circuit is closed at time ¢ = 0.

When the switch is first closed the charge on the capacitor is zero, and
therefore the voltage across it is also zero. Thus all the applied voltage is
across the resistor, and the initial current is given by J/R. As this current
flows into the capacitor the charge on it builds and the voltage across it
increases. As the voltage across the capacitor increases, the voltage across the
resistor decreases, causing the current in the circuit to fall. Gradually, the
voltage across the capacitor increases until it is equal to the applied voltage,
and the current goes to zero. We can understand this process more fully by
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Figure 9.1 Capacitor charging. t=0 T i &
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deriving expressions for the voltage across the capacitor v and the current
flowing into the capacitor 1.
Applying Kirchhoff’s voltage law to the circuit of Figure 9.1(a), we see that
iR+v=V
From Chapter 4, we know that the current in a capacitor is related to the
voltage across it by the expression

Ldv
=L —
d¢
therefore, substituting,
do
CR__ +v=V
dr

This is a first-order differential equation with constant coefficients and is
relatively easy to solve, First we rearrange the expression to give

dv V-v
dr CR
and then again to give
dt do
CR V-v

Integrating both sides then gives

= —In( —2)+ A4
; CR W=

where A is the constant of integration.

In this case we know (from our assumption that the capacitor is initially
uncharged) that when ¢ = 0, v = 0. Substituting this into the previous equa-
| tion gives

0
—==In(} -0)+ A
CR ( )
A=InV
Therefore
V
eV —v)+IV =In
CR V-
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and
4

V=g

cr TCR —

Finally, rearranging we have

v=V(1 —-e"R) (9.1)
From this expression, we can also derive an expression for the current /, since
oo de o d P Ve
[ = (,— = (,V—(l — ¢ f{..ﬁ.’) = ___c—.fh‘.,h‘
d1 ds R

We noted earlier that at ¢ = 0 the voltage across the capacitor is zero and the
current is given by J7R. If we call this initial current /, then our expression
for the current becomes

i = Je/CR (9.2)

In Equations 9.1 and 9.2, you will note that the exponential component
contains the term //CR. You will recognise CR as the time constant T of the
circuit, and thus ¢/CR is equal to ¢/ T and represents time as a fraction of the
time constant. For this reason, it is common to give these two equations in a
more general form, replacing CR by T:

v=V(1-e"T) (9.3)

g=le (9.4)

From Equations 9.3 and 9.4, it is clear that in the circuit of Figure 9.1(a)
the voltage rises with time, while the current falls exponentially. These two
waveforms are shown in Figures 9.1(b) and 9.1(c).

The switch in the following circuit is closed at t=0. Derive an
expression for the output voltage v after this time and hence calcu-
late the voltage on the capacitor at 1 = 25 s.

=10
\ 100 kQ

™

20V 100 uF —— I

The time constant of the circuit T=CR=100x 10°x 100 X 107 =10 5.
From Equations 9.3

v=V(1-¢e'T)
= 20(1 - ¢

Atr=25s

¢ _7_“(] = ‘_.—zifm)

=18.36 'V
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Figure 9.2 Inductor energising.

AC

(a) (b) (c)

9.2.2 Inductor energising

FFigure 9.2(a) shows a circuit that energises an inductor L using a voltage
source F and a resistor R. The circuit is closed at time ¢ = (), and before that
time no current flows in the inductor.

When the switch is first closed the current in the circuit is zero, since the
nature of the inductor prevents the current from changing instantly. If the
current is zero there is no voltage across the resistor, so all the applied volt-
age appears across the inductor. The applied voltage causes the current to
increase, producing a voltage drop across the resistor and reducing the volt-
age across the inductor. Eventually, the voltage across the inductor falls to
zero and all the applied voltage appears across the resistor, producing a steady

i current of J/R. As before, it 1s interesting to look at expressions for v and 1.

Applying Kirchhoff’s voltage law to the circuit of Figure 9.2(a), we sece that

iR+v=V

From Chapter 5, we know that the voltage across an inductor 1s related to the r
current through it by the expression
Lf
: 1
di [
v=L—
d?

- . . !
therefore, substituting, !

, di ,

IR+ L—=V

dt

This first-order differential equation can be solved in a similar manner to |
. - . ray b W B
that derived for capacitors above. This produces the equations l[g
v = Ve-RiiL (9.5) J
3
: 1
[ = 1(1 e C—Rr.-’f,) (i)‘{]) E'J
where [ represents the final (maximum) current in the circuit and is equal to 5
V/R. In Equations 9.5 and 9.6, you will note that the exponential component ¢
contains the term Rt/L. Now L/R is the time constant T of the circuit, thus ¢

Rt/L is equal to 1/T. We can therefore rewrite these two equations as

e (9.7)

-1

i=1(1—eT) (9.8)

g
!
:
:
:
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The forms of v and 7 are shown in Figures 9.2(b) and 9.2(¢). You might
like to compare these figures with Figures 9.1(b) and 9.1(c) for a charging
capacitor. You might also like to compare Equations 9.7 and 9.8, which
describe the energising of an inductor, with Equations 9.3 and 9.4, which we

] derived earlier to describe the charging of a capacitor.

An inductor is connected to a 15 V supply as shown below. How long
after the switch is closed will the current in the coil reach 300 mA?

. 1=0

LK 200

i :r/t}

i 15V C) 400 mH I

At

EL

e

gt |

i o = % % ‘ pas .

E | - The time constant of the circuit T = L/R = 0.4 = 20 = 0.02 s. The final cur-

rent / is given by V/R =15/20 = 750 mA.
From Equations 9.8

§ = f(] = e—u’T)
300 = 75001 — e 17002y

which can be evaluated to give

] {=10.2 ms

o e LT T A et

and The charging of a capacitor or the energising of an inductor stores energy
s of in that component that can be used at a later time to produce a current in a

mm : circuit. In this section, we look at the voltages and currents associated with
oo this process,

9.3.1  Capacitor discharging

: In order to look at the discharging of a capacitor, first we need to charge it
up. Figure 9.3(a) shows a circuit in which a capacitor C is initially connected

WS i L b

| Figure 9.3 Capacitor
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Figure 9.4 Inductor

de-energising.
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to a voltage source }”and is then discharged though a resistor R. The dis-
charge is initiated at + = 0 by opening one switch and closing another. In this
diagram, the defining direction of the current 7 1s into the capacitor, as in
Figure 9.1(a), but clearly during the discharge process charge flows out of the
capacitor, so 7 is negative.

The charged capacitor producces an electromotive force that drives a cur-
rent around the circuit. Initially, the voltage across the capacitor is equal to
the voltage of the source used to charge it (1), so the initial current is equal
to F/R. However, as charge flows out of the capacitor its voltage decreases
and the current falls. v and 7 can be determined in a similar manner to that
used above for the charging arrangement. Applying Kirchhoff’s voltage law
to the circuit gives

IR+v=0
giving
do .
CR—+v=0
dt

Solving this as before leads to the expressions
v = I,'L.-r,f(.‘.fe = I,-’c,—{r"T ([)(”
==l Rm e (9.10)

As before, the voltage and current have an exponential form, and these
are shown in Figures 9.3(b) and 9.3(c¢). Note that if / were defined in the
opposite direction (as the current flowing out of the capacitor) then the
polarity of the current in Figure 9.3(c) would be reversed. In this case, both
the voltage and current would be represented by similar decaying exponen-
tial waveforms.

9.3.2 Inductor de-energising

In the circuit of Figure 9.4(a), a voltage source is used to energise an induc-
tor by passing a constant current through it. At time ¢ =0 one switch i
closed and the other 1s opened, so the energy stored in the inductor is now
dissipated in the resistor. Since the current in an inductor cannot change
instantly, initially the current flowing in the coil is maintained. To do this
the inductor produces an electromotive force that is in the opposite direction
to the potential created across it by the voltage source. With time, the energy

I=V/R

(b) (c)
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stored in the inductor is dissipated and the ¢.m.f. decreases and the current
falls.
As before, v and / can be determined by applying Kirchhoff s voltage law
to the circuit, This gives
iR+v=0
and thus

iR+ LE =)
dr

Solving this as before leads to the expressions
v = Ve il = T (9.11)

{ = Je RiL = [ot/T (9]2)

As before, the voltage and current have an exponential form, and these are
shown in Figures 9.4(b) and 9.4(c).

We have seen in Sections 9.2 and 9.3 that circuits containing resistance and
either capacitance or inductance can be described by first-order differential
equations. For this reason, such circuits are described as first-order systems.
We have also seen that the transient behaviour of these circuits produces volt-
ages and currents that change exponentially with time. However, although
the various waveforms are often similar in form, they are not identical for
different circuits. Fortunately, there is a simple method of determining the
response of such systems to sudden changes in their environment.

9.4.1 Initial and final value formulae

Increasing and decreasing exponential waveforms (for either voltage or
current) can be found from the expressions

v=V+ (V- V)T (9.13)

i=1+ (1= I)e" (9.14)

where 17 and [, are the initial values of the voltage and current, and Fiand [,
are the final values. The first element in these two expressions represents the
steady-state response of the circuit, which lasts indefinitely. The second ele-
ment represents the transient response of the circuit. This has a magnitude
determined by the step change applied to the circuit, and it decays at a rate
determined by the time constant of the arrangement. The combination of the
steady-state and the transient response gives the total response of the cir-
cuit. To see how these formulae can be used, Table 9.1 shows them applied
to the circuits discussed in Sections 9.2 and 9.3.

The initial and final value formulae are not restricted to situations
where a voltage or current changes to, or from, zero. They can be used wher-
ever there is a step change in the voltage or current applied to a first-order
network. This is illustrated in Example 9.3.
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V=0 V=p
L=V/IR=I [=0
T=CR

v=V+ (V- V)et'T
=V+(0- V)T

=V(1-¢"T)

i=l+ (- T
=0+ (/= 0) T

= M

=0 IL=1/R=1
T=L/R

v=V+ (V= V)e'T
=0+(FV—=0)e"'T

=TIe 1/ T

i=dp+ (L, — et
=1+ (0—1)e""
= 1.-(1 —e u"T)

v= Vot (V= Ve
=0+ (F=0)e/7

- ]lc AT

i=l+ (]~ 1)e'T
=0+ (= =0)"'T

=—Je!'T

L=V/IR=1 I1,=0
T=L/R

v=Vt (V= V)e!'T
=04 (=F=0)'T

— _lr_.-c—r,'T

e

i=1+ (=17
=0+ -0)eT

= Je'7
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The input voltage to the following CR network undergoes a step
change from 5V to 10 V at time ¢ = 0. Derive an expression for the
resulting output voltage.

10 k€2

g I
10V
‘ |:> ; 20pF U,
5V
=,

O

In this example the initial value is 5 V and the final value is 10 V. The time
constant of the circuit is equal to CR=10x 10" x 20 x 10 =0.2 s.
Therefore, from Equation 9.13, for t 2 0

o=Vt (V- 1T
=10 + (5 - 10)e™"?

=10 - 56—1,—1:.2 v

9.4.2 The nature of exponential curves

We have seen that the transients associated with first-order systems contain
terms of the form A(1 — ¢™T) or Ac™7. The first of these represents a satu-
rating exponential waveform and the second a decaying exponential
waveform. The characteristics of these expressions are shown in Figure 9.5.

In general, one does not need to produce exact plots of such waveforms,
but it is useful to know some of their basic properties. Perhaps the most
important properties of exponential curves of this form are:

1 The initial slope of the curve crosses the final value of the waveform at a
timer=T.

2 Atatime ¢ =T, the waveform has achieved approximately 63 per cent of
its total transition.

3 The transition is 99 per cent complete after a period of time equal to 5T.

9.4.3 Response of first-order systems to pulse and
square waveforms

Having looked at the transient response of first-order systems, we are now in
a position to consider their response to pulse and square waveforms. Such
signals can be viewed as combinations of positive-going and negative-going
transitions and can therefore be treated in the same way as the transients
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discussed above. This is illustrated in Figure 9.6, which shows how a square
waveform of fixed frequency is affected by RC and R networks with differ-
ent time constants.

Figure 9.6(a) shows the action of an RC network. We looked at the tran-
sient response of such an arrangement in Sections 9.2 and 9.3 and at typial
waveforms in Figures 9.1 and 9.3. We noted that the response is exponential,
with a rate of change that is determined by the time constant of the circuit
Figure 9.6(a) shows the effect of passing a square wave with a frequency of
1 kHz through RC networks with time constants of 0.01 ms, 0.1 ms and | ms
"The first of these passes the signal with little distortion, since the wavelength
of the signal is relatively long compared with the time constant of the circuit,
As the time constant is increased to 0.1 ms and then to 1 ms, the distortion
becomes more apparent as the network responds more slowly. When the
time constant of the RC network is large compared with the period of the
input waveform, the operation of the circuit resembles that of an integrator,
and the output represents the integral of the input signal.

Transposing the positions of the resistor and the capacitor in the circuit
of Figure 9.6(a) produces the arrangement shown in Figure 9.6(b). ‘The out-
put voltage is now the voltage across the resistor and is therefore propor-
tional to the current in the circuit (and hence to the current in the capacitor).

We would therefore expect the transients to be similar in shape to the cur- §

rent waveforms shown in Figures 9.1 and 9.3. The steady-state value of the
output 1s zero in this circuit and, when a signal of 1 kHz is passed though s
network with a time constant of (.01 ms, the signal is reduced to a series of
spikes. The circuit responds rapidly to the transient change in the input, and
the output then decays quickly to its steady-state output value of zero. Here
the time constant of the RL network is small compared with the period of the
input waveform, and the operation of the circuit resembles that of a differ-
entiator. As the time constant is increased, the output decays more slowly
and the output signal is closer to the input.

ot oo e o e

G el 3 et




on
he
he
or,

it

Or-
or).
ur-

the
vh a

s of
and
fere

" the

fer-

wly

File 9A

i 9.4 GENERALISED RESPONSE OF FIRST-ORDER SYSTEMS 185
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Figures 9.6(c) and 9.6(d) show first-order RL networks and again illustrate
the effects of the time constant on the characteristics of the circuits. The pair
of circuits produces similar signals to the RC circuits (when the configura-
tions are reversed), and again one circuit approximates to an integrator while
the other approximates to a differentiator.

Simulate the circuit of Figure 9.6(a) choosing appropriate component
values to produce a time constant of 0.01 ms. Use a digital clock gener-
ator to produce a square-wave input signal to this circuit, setting the
frequency of the clock to 1 kHz. Observe the output of this circuit
and compare this with that predicted in Figure 9.6. Change one of the
component values to alter the time constant to (.1 ms, and then to 1 ms,
observing the output in each case. Hence confirm the form of the wave-
forms shown in the figure. Experiment with both longer and shorter
time constants and note the effect on the output.
Repeat this exercise for the remaining three circuits of Figure 9.6.
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Figure 9.7 Response of first-

order systems to square waves of

different frequencies.
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The shapes of the waveforms in Figure 9.6 are determined by the relatiw
values of the time constant of the network and the period of the input wave-
form. Another way of visualising this relationship is to look at the effect of
passing signals of different frequencies through the same network. This i
shown in Figure 9.7. Note that the horizontal (time) axis is different in the
various waveform plots.

The RC network of Figure 9.7(a) 1s a low-pass filter and therefore low-
frequency signals are transmitted with little distortion. However, as the fre-
quency increases the circuit has insufficient time to respond to changes in the
input and becomes distorted. At high frequencies, the output resembles the
integral of the input.

The RC network of Figure 9.7(b) 1s a high-pass filter and therefore high-
frequency signals are transmitted with little distortion. At low frequencies,
the circuit has plenty of time to respond to changes in the input signal and
the output resembles that of a differentiator. As the frequency of the inpu
increases, the network has progressively less time to respond and the outpu
becomes more like the input waveform.
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The RL network of Figure 9.7(c) represents a high-pass filter and there-
fore has similar characteristics to those of the RC network of Figure 9.7(b).
Similarly, the circuit of Figure 9.7(d) is a low-pass filter and behaves in a

I similar manner to the circuit of Figure 9.7(a).

Simulate the circuit of Figure 9.7(a) choosing appropriate component
values to produce a time constant of 1 ms. Use a digital clock generator
to produce a square-wave input signal to this circuit, setting the fre-
quency of the clock to 10 Hz. Observe the output of this circuit and
compare this with that predicted in Figure 9.7. Change the frequency of
the clock generator to 100 Hz and then to 1 kHz, observing the output
in each case. Hence confirm the form of the waveforms shown in the
figure. Experiment with both higher and lower frequencies and note the
effect on the output.

Repeat this exercise for the remaining three circuits of Figure 9.7.

Circuits that contain both capacitance and inductance are normally described
by second-order differential equations (which may also describe some
other circuit configurations). Arrangements described by these equations are

T termed second-order systems. Consider for example the RLC circuit of
¥ : Figure 9.8. Applying Kirchhoff’s voltage law to this circuit gives
.sl .
4t di
1 L= +Ri+ vy =V
:,-‘ ds

Since 7 is equal to the current in the capacitor, this is equal to C dv./dz.
Differentiating this with respect to 7 gives di/dt = C d’v./d+*, and therefore

I 3
Lcd¥e ¢ re%e 4o =y

Jve de* dt
vc-f which is a second-order differential equation with constant coefficients.
; 0 When a step input is applied to a second-order system, the form of the
54 resultant transient depends on the relative magnitudes of the coefficients of
the its differential equation. The general form of the differential equation is
DW— 2
fre- u]_d_): Ed_}’ +y=ux
ite w; dt* @, dt
the

Figure 9.8 A series RLC 1=
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Figure 9.9 Response of

second-order svstems.
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Step
input

where @, is the undamped natural frequency in rad/s and & (Greek letter
seta) is the damping factor.

The characteristics of second-order systems with different values of Care
tllustrated in Figure 9.9. This shows the response of such systems to a step
change at the input. Small values of the damping factor ¢ cause the system
to respond more rapidly, but values less than unity cause the system to over-
shoot and oscillate about the final value. When ¢ = 1, the system 1s said to
be critically damped. This is often the ideal situation for a control system,
since this condition produces the fastest response in the absence of over-
shoot. Values of { greater than unity cause the system to be overdamped,
while values less than unity produce an underdamped arrangement. As the
damping is reduced, the amount of overshoot produced and the settling
time both increase. When {= (), the system is said to be undamped. This
produces a continuous oscillation of the output with a natural frequency of
@, and a peak height equal to that of the input step.

e e e

Simulate the circuit of Figure 9.8, replacing the voltage source and
the switch by a digital clock generator. Use values of 100 €. 10 mH and
100 uF for R, L and C, respectively, and set the frequency of the clock
generator to 2.5 Hz. Use transient analysis to look at the output voltage
over a period of 1 s.

Observe the output of the circuit and note the approximate time
taken for the output to change. Increase the value of R to 200 Q and note
the effect on the output waveform. Progressively increase R upto 1 kQ
and observe the effect.

Now look at the effect of progressively reducing R below 100 Q (down
to 1L or less). Estimate from your observations the value of R that
corresponds to the circuit being critically damped.
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Higher-order systems, that is those that are described by third-order, fourth-
order or higher-order equations, often have a transient response that is
similar to that of the second-order systems described in the last section.
Because of the complexity of the mathematics of such systems, they will not
be discussed further here.

* The reaction of a circuit to instantaneous changes at its input is
termed its transient response.

* The charging or discharging of a capacitor, and the energising or
de-energising of an inductor, are each associated with exponential
voltage and current waveforms.

» Circuits that contain resistance, and either capacitance or inductance,
may be described by first-order differential equations and are there-
fore called first-order systems.

* The increasing or decreasing exponential waveforms associated with
first-order systems can be found using the initial and final value
. formulae.

* The transient response of first-order systems can be used to deter-
mine their response to both pulse and square waveforms.

* At high frequencies, low-pass networks approximate to integrators.

* Atlow frequencies, high-pass networks approximate to differentiators.

* Circuits that contain both capacitance and inductance are normally
described by second-order differential equations and are termed
second-order systems.

e

* Such systems are characterised by their undamped natural frequency
@, and their damping factor {. The latter determines how rapidly
a system responds, while the former dictates the frequency of
undamped oscillation.

I_"Efxéicises

81 Explan the meanings of the terms ‘steady-state (=10
_ response” and ‘transient response’. \ LA
9.2 When a voltage is suddenly applied across a series
combination of a resistor and an uncharged cap-
acitor, what is the initial current in the circuit? 12V LiiE e [14
What is the final, or steady-state, current in the
cireuit?

83 The switch in the following circuit is closed at ¢ = ().

Derive an expression for the current in the circuit 9.4 Simulate the arrangement of Exercise 9.3 and use
after this time and hence calculate the current in the  [=55] transient analysis to investigate the current in the
circuit at £ = 4 s, circuit. Use a switch element that ¢loses at 1=0 1o
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Exercises continued

9.5

9.6

9.8

9.9

210

9:11

912

start the charging process, and use a second switch
that opens at =0 to ensure that the capacitor is
initially discharged (this second switch should be
connected directly across the capacitor). Use your
simulation to verify your answer to Exercise 9.3.
When a voltage is suddenly applied across a series
combination of a resistor and an inductor, what is the
initial current in the circuit? What is the final, or
steady-state, current in the circuit?

The switch in the following circuit is closed at r = 0.
Deduce an expression for the output voltage of the
circuit and hence calculate the time at which the out-
put voltage will be equal to 8 V.

t=10

2
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Simulate the arrangement of Exercise 9.6 and use
transient analysis to investigate the output voltage of
the circuit. Use a switch element that closes at 1 =1
to start the energising process, and use your simula-
tion to verify your answer to Exercise 9.6,

A capacitor of 25 puF 1s initially charged to a voltage of
50 V. At time ¢ = 0, a resistance of 1 k€ is connected
directly across its terminals. Derive an expression for
the voltage across the capacitor as it is discharged
and hence determine the time taken for its voltage to
dropto 10 V.

An inductor of 25 mH is passing a current of 1 A. At
t =0, the circuit supplying the current is instantly
replaced by a resistor of 100 € connected directly
across the inductor. Derive an expression for the cur-
rent in the inductor as a function of time and hence
determine the time taken for the current to drop to
100 mA.

What is meant by a ‘first-order system’, and what
kind of circuits fall within this category?

Explain how the equation for an increasing or decreas-
ing exponential waveform may be found using the
initial and final values of the waveform.

The input voltage to the following CR network
undergoes a step change from 20V to 10 V at time
t=0. Derive an expression for the resulting output
voltage.

20V
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Sketch the exponential waveform v = 5¢™/",

For each of the following circuit arrangements, sketch
the form of the output voltage when the period of the
square-wave input voltage is:

(a) much greater than the time constant of the circuit;
(b) equal to the time constant of the circuit;

{c) much less than the time constant of the circuit.

v () T, :
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Simulate each of the circuit arrangements of
Exercise 9.14, selecting component values to give a
time constant of 1 ms in each case. Use a digital clock
generator to apply a square-wave input voltage to the
circuit and use transient analysis to observe the form
of the output for input frequencies of 200 Hz, 1 kHz
and 5 kHz. Compare these observations with your
results for Exercise 9.14.

Under what circumstances does the behaviour
of a first-order high-pass filter resemble that of a
differentiator?

Under what circumstances does the behaviour
of a first-order low-pass filter resemble that of an
integrator?

9.16

9.17

9.18 What is meant by a ‘second-order system’, and what
kind of circuits fall within this category?

Derive an expression for the current in the circuit of
Figure 9.8.

Explain what is meant by the terms ‘undamped
natural frequency’ and ‘damping factor’ as they apply
to second-order systems.

What is meant by ‘critical damping’ and what value
of the damping factor corresponds to this situation?
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