
09.21.23 Eðlisfræði 2a

How to deal with BJT circuits?

Note: V_{γ} is the voltage drop over a forward biased diode. V_{sat} is the saturation voltage.

- 1. Apply Kirchoff's 2. law ("loop rule") to a closed loop containing the BE junction.
- 2. Do the same for a loop containing the CE junction.
- 3. Assume we are in cutoff and set $I_{\rm B} = 0$ and find $V_{\rm BE}$ based on item 1.
 - (a) If $V_{\rm BE} < V_{\gamma}$ then the transistor is in the cutoff region. $I_{\rm B} = 0$ and $V_{\rm BE}$ remains unchanged. Set $I_{\rm C} = I_{\rm E} = 0$ and calculate $V_{\rm CE}$ based on item 2. *Done.*
 - (b) If $V_{\rm BE} > V_{\gamma}$ then the transistion is not in cutoff. Set $V_{\rm BE} = V_{\gamma}$.
- 4. Assume the transistor is in the linear region. Set $I_{\rm E} \simeq I_{\rm C} \simeq \beta I_{\rm B}$. Calculate $V_{\rm CE}$ based on item 2.
 - (a) If $V_{\rm CE} > V_{\rm sat}$ then the transistor is in the linear region—problem solved.
 - (b) If $V_{\rm CE} < V_{\rm sat}$ then the transistor is in saturation. Set $V_{\rm CE} = V_{\rm sat}$ and calculate $I_{\rm C}$ from item 2. Then you should have $I_{\rm C} < \beta I_{\rm B}$. Problem solved.

