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1 Introduction
In this lab exercise the student will get to know a simple model, describing the period of a simple
pendulum, that breaks down when carefully scrutinized. We shall explore when deviations from
the simple model are observable and the model will be improved in an attempt to better represent
reality. This lab is divided in two parts, the first where the period is measured with a stopwatch
and the second where it is measured with an electronic clock connected to an optical gate.

2 The simple pendulum
The simple pendulum is described in the textbood (see reference). Forces parallel to the di-
rection of motion in Fig. 13.20 in Young & Freedman are equal to ma. Rearrangement of this
statement results in the equation of motion of the simple pendulum

d2θ(t)
dt2 +

g
L

sin(θ(t)) = 0 (1)

It is worth noting that m does not appear in Eq.(1). The motion of the pendulum is thus indepen-
dent of its mass. For small angles θ we can approximate sin(θ) by θ, or sin(θ)∼= θ. Equation (1)
then has a simple solution

θ(t) = Θcos(ωt) (2)

where Θ is the maximum amplitude of the pendulum and ω2 = g/L. The period, T0 = 2π

ω
, is

thus

T0 = 2π

√
L
g

(3)

The importance of the pendulum lies among other things in that its period is independent of the
mass of the weight and the oscillation amplitude within the limits of our approximation earlier.
As the amplitude is increased the approximation sin(θ) ∼= θ breaks down. When this becomes
observable [as deviation from Eq.(3)] depends on the accuracy of the time measurement used to
determine the period. When this happens we do what physicists usually try to do, we improve
our model.

3 Improved model
Equation (1) cannot be solved directly without approximation to obtain a closed form solution
as in Eq.(2). However it is possible to obtain the period of oscillation. This will not be done
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here, but with the appropriate method1 one obtains the period

T = 4

√
L
g

Z
Θ

0

dθ√
2(cosθ− cosΘ)

(4)

This integral is solved in the appendix and the solution is represented as an infinite series. Here
we display the first three terms

T = T0

[
1+

1
4

sin2 Θ

2
+

9
64

sin4 Θ

2
+ . . .

]
(5)

To explore how many terms are needed for a useful description of the motion we insert Θ =
60°. The we obtain T = T0(1 + 1/16 + 9/1024 + . . .), so the third term is less than 1% of the
first term. Let us assume that the error in using only two terms is less that the error of the time
measurement and ignore the third term, for now. Now we have simplified our improved model
to

TΘ = T0

(
1+

1
4

sin2 Θ

2

)
(6)

The first term in Eq.(6) is the classical model (Eq.(3)) and the second one describes how the
amplitude Θ affects the period TΘ.

4 Measurements of period of pendulum
The pendulum is a weight that dangles from a gallow with a soft, lightweight thread. On the
gallows there’s a protractor to allow measurements of amplitude of oscillations.

• Measure the pendulum’s length, L. Note that the weight is not a point mass as in Fig. 13.20
in Young & Freedman. You must therefore define the length L sensibly.

4.1 Measurements with a stopwatch
• Measure the period of oscillation using a stopwatch for Θ < 5°, Θ = 15° and Θ = 30°.

Consider whether it makes sense to measure a single period or to count several/many and
devide by the number of oscillations. Why not time 100 periods? Discuss the pros and
cons amongst yourselves.

• Compare the measurement results (Θ,TΘ) with the model. Remember to take uncer-
tainty/error into account.

Suggestion for data processing: To find the uncertainty in the model value of the period T0 we
differentiate the model (3) (see e.g. græna kver or notes on the webpage)

∆T0 =
∂T0

∂L
·∆L

and obtain

∆T0 = 2π · ∂

∂L

√
L
g
·∆L

1Ragnar Sigurðsson, Fyrirlestrar um afleiðujöfnur, Fourier-greiningu og tvinnfallagreiningu, Háskólaútgáfan,
1994, bls. 9 - 10
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or
∆T0 =

π ·∆L√
g ·L

To connect the uncertainty in an n-period measurement Tn to the uncertainty for a single
period we define the quantity T = Tn

n . We then have the relation

∆T =
1
n
·∆Tn

Check if the model and your measurements agree within uncertainty.

4.2 Measurements with an electronic clock
• Set the clock to Period Mode and measure the period for amplitudes Θ in the range 5° -

40° at approximately 5° intervals. The clock’s manual is in an appendix.

• Compare the measurements (Θ,TΘ) with the model. Remember to take into account un-
certainty.

Suggested data processing: The model describes the relation between Θ and TΘ, that is non-
linear. This makes graphical comparison difficult. What can one do? It is probably easiest to
rewrite Eq.(6) so there is a linear relationship between two variables. A very simple manipula-
tion of (6) yields

TΘ = T0 +
T0

4

(
sin2 Θ

2

)
(7)

Now there’s a linear relationship between TΘ and the quantity sin2 Θ

2 . Make a graph with sin2 Θ

2
on the horizontal axis and TΘ on the vertical axis. The data should reveal a linear relationship
where the intercept with TΘ is at T0 and the slope of the line is T0

4 .
The uncertainty in sin2 Θ

2 can be obtained by

∆sin2 Θ

2
=

∂
(
sin2 Θ

2

)
∂Θ

∆Θ =
1
2

sinΘ∆Θ

Note that the quantity ∆Θ must be in radians because our rules of differentiation to obtain
uncertainty only apply in those units of measure (od not use degrees for angles when dealing
with uncertainty).

The stability of the setup may have a greater effect on the uncertainty in period than the
properties of the clock. The uncertainty ∆TΘ must cover all variations in measurements for a
fixed amplitude.
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